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The algorithm of John and Sachs (1990), based on the theorem of Gutman, Mallion and 
Essam (1983), is applied to give an independent count of the number of spanning trees in the 
recently synthesised sixty-carbon-atom cluster Buckminsterfullerene (icosahedral C60, footbal- 
lene, soccerballene, etc.). If the original "Matrix-Tree" theorem is used to solve this problem, 
a 59 x 59 determinant needs to be evaluated; the method of Gutman et al. reduces this require- 
ment to the development of a 31 x 31 determinant; the John-Sachs algorithm further reduces 
this problem to the computation of an 11 x 11 determinant. The "complexity" of Buckminster- 
fullerene is confirmed to be 

22s x 34 X 53 x 1 lS x 193 , 

which is of the order of 3.75 x 102°. Attention is redirected to the observation that any specified 
one of these numerous spanning trees could be selected as the starting point if a standard 
calculation were to be made of the relative re-electron "ring-current" intensities extant in 
icosahedral C60. 

1. I n t r o d u c t i o n  

C o u n t i n g  the spann ing  trees in an  electr ical  n e t w o r k  (or,  m o r e  genera l ly ,  a 
g raph)  is an  o ld  p r o b l e m  tha t  goes back  to  K i r c h h o f f  in 1847 [1] - see also refs. [2] 
and  [3] fo r  a h is tor ica l  a c c o u n t  o f  this subject .  S o m e  years  ago,  one  o f  us (R .B .M. ) ,  
wi th  G u t m a n  a nd  Essam [2], i nvoked  use o f  the inner  dual  o f  a given n e t w o r k /  
g raph ,  t o g e t h e r  wi th  the  general ised charac te r i s t i c  p o l y n o m i a l  [4] o f  t ha t  inner  
dual ,  in o r de r  to  s impl i fy  the p r o b l e m  o f  spann ing- t ree  e n u m e r a t i o n  in a general ,  
p l ana r  g raph .  The  o the r  o f  the p resen t  au th o r s  (P.J.) ,  wi th  Sachs [5], la te r  devel-  
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oped an algorithmic approach to the 1983 theorem of Gutman et al. [2]; this algo- 
rithm is described in detail in ref. [5]. In the meantime, it was pointed out [6] that 
this theorem [2] (and, consequently, the algorithm devised in connection with it [5]) 
also holds true when the planar graph in question is embedded on the surface of a 
sphere. In 1983, when the method of Gutman et al. was originally proposed [2], the 
prospect of its application to a graph embedded in this way was of only academic 
interest, because the main use of the theorem was for counting the spanning trees in 
graphs that represent conjugated-hydrocarbon molecules [2]. However, since the 
diagnosis [7] of Buckminsterfullerene (also since known as icosahedral C60, soccer- 
ballene, footballene, etc. - see fig. 1) in 1985, an opportunity to apply this theorem 
to a molecular graph just so embedded arises quite naturally [6]. Furthermore, as 
the concept of spanning trees is encountered when calculating so-called "ring- 
current" effects in conjugated molecules [8-14], consideration of the spanning trees 
latent within the Buckminsterfullerene molecular graph would be relevant to a 
proper theoretical treatment of the 13C-NMR spectrum of that species [13-15], if 
such could be obtained - for, until recently, this spectrum was, itself, hypothetical. 
The remarkable synthesis of Buckminsterfullerene in macroscopic quantities, 
announced in 1990 by Kr~itschmer et al. [16], has, however, enabled this goal 
instantly to be realised, in the form of the 13C-NMR spectrum of icosahedral C60 
published immediately afterwards [17,18]. These recent experimental develop- 
ments of the last few years could therefore be said to make an immediate applica- 
tion of Gutman et al.'s 1983 theorem [2] to Buckminsterfullerene especially timely 
[3]. Accordingly, in this communication, we choose to adopt the algorithmic ver- 
sion [5] of that theorem [2], referred to earlier, in order to confirm [3] the number of 
spanning trees in icosahedral C60. 

2. Application of  the algori thm of  Sachs and John to the molecular graph of  
Buckminsterful lerene 

For brevity, we give only the essential details here. For a full description of the 
algorithm being used, the reader is referred to ref. [5]; for a definition of any graph- 

Fig. 1. Three-dimensional perspective view of the molecular graph (I) of Buckminsterfullerene 
(Icosahedral C60). 
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theoretical terms not specifically explained, ref. [4], for example, may profitably 
be consulted. 

Let G be a labelled graph. A spanning tree of G is a tree of G which covers all 
the vertices of G. Denote by t(G) the number of all spanning trees; (t(G) is also 
called the "complexity" of G). Let I denote the graph oficosahedral C60 (Buckmin- 
sterfullerene, soccerballene, footballene, etc. - see fig. 1) and let F be an embedding 
of I (drawn with DSh symmetry) in the plane, effected in such a way that F has no 
edge cuts. (F is thus, in essence, the Schlegel diagram of C60, also illustrated in refs. 
[19] and [3]). F divides the plane into 31 finite regions Rf , f  = 1 ,2 , . . . ,  31,and one 
infinite region (see fig. 2). Let By = B(Rf) denote the boundary of the finite region 
Rf, and let/f  = I(Bf) stand for its length; (in the case of the Buckminsterfullerene 
molecular graph,/f will always be either 5 or 6). The inner dual D = D(F) o f F  is the 
dual of F without the vertex that corresponds to the infinite region of F; (i.e., it is 
the dual o f F  with what is sometimes called the "infinite-face vertex" - and all edges 
incident upon it - deleted). Note that D has the vertex set V(D) = {Vl, v2 , . . . ,  v31}, 
where vf is in 1-1 correspondence with the finite region Rf. A representation o fD  - 
with Dsh symmet ry-  is given in fig. 3; in that figure, vertices of the inner dual that 
lie within a five-membered ring in the embedding, F (fig. 2), of the original molecu- 
lar graph, I (fig. 1), are denoted by filled circles, and those vertices of the inner 
dual that lie within a six-membered ring in F are depicted as open circles. Let 

F- 

Fig. 2. Embedding (F) of the Buckminsterfullerene molecular graph (I) in the plane, effected in 
such a way that F has no edge cuts. This "Schlegel Diagram", F, of  I, drawn with Dsh symmetry, 

depicts the division of the plane into 31 finite regions Rf, f  = 1, 2 , . . . ,  31, and one infinite region. 
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D=D(F) 

Fig. 3. The inner dual, D (= D(F)), of F, drawn with Dsh symmetry. This is the dual of F with the 
"imqnite-face" vertex - and all edges incident upon it - suppressed. The vertices of D are 
vf , f  = 1 ,2 , . . . ,  31. Vertices of D that lie within a five-membered ring in the embedding, F, o f / a r e  
denoted by filled circles; those vertices of D that lie within a six-membered ring in F are depicted as 

open circles. 

A = A(D) be the (0, 1)-adjacency matrix of the inner dual, and define also the 
matrix W = (wfi), i = 1 ,2 , . . . ,  31, with 

/f i f f  = i, 
wfi= 0 if f T ~ i ,  

as the vertex-weight matrix of D. Note tha t / f  is the weight of vertex vf, f = 1, 
2 , . . . , 31 .  

According to the theorem ofGutman et al. [2], 

t(F) = d e t ( W -  A).  (1) 

We are now in a position to explain in detail an application to icosahedral C60 of 
the algorithm given in ref. [5]. 

With the vertices of D labelled as in fig. 3, we define two (non-disjoint) subsets 
of V(D), 

gs(D) = (Vl ,V2,733 , . . .  ,7311} and 

gs(D) = {731,7322, 7323,""", 7331} , 

as sets of what we shall call [5], respectively, source points and sink points, of D. 
The elements of both sets are connected by pairwise-disjoint "linear segments" [5], 
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arranged in a "star-shape" [5] and covering all vertices of V(D). These "star seg- 
ments",  Sk,k = 1 , 2 , . . . ,  11, in D reduce to a single point  in the case o f k  --- 1 and, 
for k = 2, 3 , . . . ,  11, they connect source point s k (defined to be equal to Vk), of a 
given star segment Sk, with sink point Sk (defined to be equal to v20+k) of  that  same 
star segment, as drawn in fig. 4. In that figure, "source" vertices are shown as 
large, open circles, "sink" vertices as small, filled circles, and vertices that  are 
neither "source" nor "sink" ones are represented simply as the points of intersec- 
tion of  two or more edges of  D. In what follows, therefore, the points s 1 , s2 , . . . ,  s 11 
will be referred to as the "source vertices of D". As prescribed in the algorithm 
devised in ref. [5], every star segment Sk of D is now extended beyond its sink point  
Sk by connecting Sk with an additional, so-called "virtual" [5], vertex s~; let the 
path S;~ denote the star segment Sk prolonged in this way by extension as far as its 
"virtual" vertex, s~. Finally, direct all paths from "source" to "sink"; D is thereby 
transformed into a diagram (presented as fig. 5) that we shall call D*. In fig. 5, 
"source" vertices are shown as large, open circles, "sink" points are depicted as 
small, filled circles, and "virtual" vertices are denoted by small, open circles; all the 
other vertices (not classified as "source", "sink" or "virtual") are just represented 
as points of  intersection of two or more edges of  D*. (The reader is alerted here to 
the unfortunate possibility of  confusion that could arise as a result of  our use of  this 
"asterisk" notation. This is because the basis of the present collaborative paper 

[3 

Fig. 4. "Star  segments" Sk, in D, which, for each k (k = 2 , 3 , . . . ,  11), connect "source points" 
s k (:= Vk) with their respective "sink points" Sk (:= v20+k); when k = 1, this segment reduces to a 
single point. "Source" vertices are shown as large, open circles, "sink" vertices as small, filled circles, 
and vertices that are neither "source" nor "sink" ones are represented simply as the points of inter- 

section of two or more edges of D. 
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Fig. 5. The diagram referred to as "D*", in which every "star segment" Sk of D (fig. 4) is extended 
beyond its "sink point" Sk by connecting s, with an additional "virtual" vertex ~k. S~ is the "star seg- 
ment" Sk so extended, and all paths are directed from "source" to "sink". "Source" vertices are 
shown as large, open circles, "sink" points are depicted as small, filled circles, "virtual" vertices are 
denoted by small, open circles, and all other vertices (not classified as "source", "sink" or "virtual") 

are just represented as points of intersection of two or more edges of D*. 

from Canterbury and Ilmenau is to make appeal to the results contained in two of 
our respective earlier works, prepared independently of each other - the 1983 theo- 
rem of Gutman, Mallion and Essam [2] and the 1990 algorithm of John and Sachs 
[5]. Gutman et al. [2] used "G*" to denote the inner dual of a graph G, of which the 
complete ("geometric") dual would, in their terminology, be called "G +''. In the 
current analysis, we are using the notation introduced by John and Sachs [5] and 
described in detail, above. Consequently, the adoption of the superscripts " . "  and 
" + "  in some of the symbolism invoked here does, regrettably, have no connection 
with the way in which they were used by Gutman et al. in ref. [2] - even though the 
present paper is very much based on the results of that latter work!) 

Now let v be a vertex (which is not a source point) of D* lying on path S~, say. 
Vertex v has a unique immediate predecessor on S~ which we denote by v+; let 
N(v +) be the set of all neighbours of v + in D*, and denote by N+(v), defined as 
being equal to N(v +) - {v}, the set of those neighbours ofv + in D* that are distinct 
from v. To every vertex v of D* we may assign a vector 

C(V) = (CI(V) C2('0) C3(V). . .  C11(~3)) T 

by means of the following recursive procedure: 
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(i) For each source vertex, s k, k = 1 ,2 , . . . ,  11, consider forming the vector 

C(S k) = (t~Ik t~2k t~3k.. ,  t~llk) T 

where 

{10 i f l = k ,  
61k = if l ¢ k 

(l = 1 ,2 , . . . ,  11). 
When a given vertex has been thus encountered, and its associated vector has 
been formed in this way, we shall refer to that vertex as having been "marked".  
("Marking" a vertex z may be thought of as a process in which the vector c(z) 
is written down beside the vertex z; this is, of course, to be considered as only 
figurative and in most cases it is in fact more practical to arrange the vector list 
in a tabular form, as we shall do presently in the current application of this algo- 
rithm). 

(ii) Let v be a vertex of D* not so far encountered and "marked" as described 
above, and suppose that v + and all vertices of N + (v) have already been dealt 
with ("marked") and that v + has weight w(v+); now mark v and put 

c ( v )  = + )  - 

v' eN+(v) 

By running through all the vertices of D* from the centre outwards, it is straightfor- 
ward successively to calculate, in this way, all the required vectors c(v) (which are 
uniquely determined). 

Finally, form the matrix 

C*(D) = (v(s~) c(s~) c(s;) . . .c(S~l))  

= [¢1(S~)]; l =  1 , 2 , . . . , 1 1 ,  

k =  1 , 2 , . . . , 1 1 .  

The matrix C* (D) that results from an application of the above recursive scheme 
to icosahedral C60 is presented in table 1. 

By appeal to theorem 6 ofref. [5], we may finish this process by concluding that 

t(F) = detC*(D) (D = D(F)) 
= the complexity of icosahedral C60. (2) 

3. Numerical  calculations 

Calculating the number of spanning trees in Buckminsterfullerene by the algo- 
rithmic approach [5] adopted here thus amounts to evaluating the determinant of 
the (11 X 11) matrix C* (D), the individual elements of which are displayed in the 
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Table 1 
Thematrix C*(D) = [ct(s~)]. 

k l 

1 2 3 4 5 6 7 8 9 10 11 

1 5 - 1  0 - 1  0 - 1  0 - 1  0 - 1  0 
2 -121 415 - 2  79 -30  -17  -178 -17  -178 79 - 30  
3 154 - 4  415 140 79 -484 -17  -484  - 17  140 79 
4 -121 79 -30  415 - 2  79 -30  - 17  -178 - 17  -178 
5 154 140 79 - 4  415 140 79 -484  - 17  -484  - 17  
6 -121 -17  -178 79 -30  415 - 2  79 - 30  - 17  -178 
7 154 -484 -17  140 79 - 4  415 140 79 -484 -17  
8 -121 -17  -178 -17  -178 79 -30  415 - 2  79 - 3 0  
9 154 -484 -17  -484 -17  140 79 - 4  415 140 79 

10 -121 79 -30  -17  -178 -17  -178 79 - 30  415 - 2  
11 154 140 79 -484  -17  -484 -17  140 79 - 4  415 

table. The advantages of the present algorithmic procedure [5] are thus manifest, 
for application [3] of the original theorem of Gutman et al. [2] to this same problem 
requires [3] finding the determinant of a (31 x 31) matrix - and, if the standard 
"matrix-tree" theorem [4] had been applied in order to count the number of span- 
ning trees in icosahedral C60, the value of a (59 x 59) determinant would have to 
have been calculated. Even so, a difficulty that is still encountered when computing 
the determinant of the matrix C* (D) shown in table 1 - and one that is also met 
with when the original, unmodified theorem of Gutman et al. [2] is applied directly 
to the Buckminsterfullerene molecular graph [3] - is that the complexity in ques- 
tion is an integer of the order of 102°, the value of which is required precisely. This 
necessitates display of a number of significant figures which is outside the range of 
most large computers, and is certainly beyond that of the computers to which the 
present authors had access in this work. This difficulty is essentially just a computa- 
tional (though by no means trivial) problem, the resolution of which has been fully 
described elsewhere [3] - several mathematical and computational devices need to 
be invoked, including the use of modulo arithmetic and the storage of numbers as 
arrays [3], and knowledge is, furthermore, required of the approximate order-of- 
magnitude of the quantity being calculated [3]. The result is 

det(C*(D)) = t(F) = the complexity of icosahedral C60 

= 375 291 866 373 898 816 000, 

which, factorised as powers of prime numbers, is 

225 x 34 x 53 x 115 x 193 . 
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4. Concluding r e m a r k s  

By way of conclusion, it may in passing be mentioned that (as has been empha- 
sised before [2,3,9-11,20-22]) any desired one of these approximately 3.75 x 1020 
spanning trees extant within the molecular graph of Buckminsterfullerene may be 
selected as a starting point for effecting a calculation of the molecule's relative n- 
electron "ring-current" intensities by an application of the now-classic method due 
to McWeeny [8-12,20-23]. In that approach, knowledge is assumed of the stan- 
dard ("field-free") basis atomic-orbitals - i.e., the orbitals as they would be in the 
absence of any magnetic field - and then a clever unitary transformation [8-12] is 
performed on the field-influenced orbitals in such a way that all the perturbation 
brought about by the presence of an applied, external, magnetic field is concen- 
trated into just one bond in each of the rings (in the chemical sense of that term) con- 
tained within the conjugated molecule under study. These latter (called by 
McWeeny [8] "circuit-completing bonds") are precisely the bonds that are in 1-1 
correspondence with those edges which, if added to an appropriate spanning-tree 
of the molecular graph in question, would cause that original parent molecular 
graph to be reconstituted [11 ]. The relevance that the concept of spanning trees, dis- 
cussed here, has to "ring-current" calculations is thus manifest. 

The unitary transformation originally put forward by McWeeny [8] may be 
applied if the spanning tree selected is "unbranched" (i.e., if it represents a Hamil- 
tonian path through the parent molecular graph in question [11]); otherwise, if the 
chosen spanning-tree is "branched" (i.e., if it does not represent a Hamiltonlan 
path through the parent molecular graph [11]), a modified (and more general) uni- 
tary transformation, devised more than a decade later by Gayoso and Boucekkine 
[10], must be invoked. As has been pointed out previously [8-12,20-22], because 
the final, relative "ring-current" intensities evaluated by the McWeeny method are 
invariant to the choice of the particular spanning-tree on which the calculation is 
based, there are necessarily many more relationships between the bond orders and 
the self- and mutual imaginary bond-bond polarisabilities (molecular-orbital 
indices that arise in the McWeeny formalism [8-12,20-23]) than there are among 
the bond orders and the corresponding real bond-bond polarisabilities, originally 
introduced, more than 10 years before McWeeny's [8] work, by Coulson and 
Longuet-Higgins [24]. It has been noted [3] that there are 4095 imaginary bond-  
bond polarisabilities (9°C2 "mutual" ones, and 90 "self" ones), as well as 90 bond 
orders, associated with the 90 carbon-carbon bonds of icosahedral C60, and that 
- because of symmetry and the constraints on these quantities arising from the 
invariance of calculated relative "ring-current" intensities to the choice of which 
spanning tree is adopted for their computation - only a very small proportion of 
these 4185 numerical entities will, in practice, actually be distinct. 

A further chemical implication of the complexity of a graph representing a mole- 
cule lies in the area of chemical nomenclature. Any notation for a given molecule 
and its derivatives involves selecting what amounts to a spanning tree of the mole- 
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cule in order to label its vertices and then produce the required linear notat ion 
[25,26]. The complexity is a measure of  how easy or difficult it will be to identify 
and compare derivatives, on such an indexing scheme. 

The main thrust of this work, however, has been to illustrate a specific applica- 
tion, to a molecule of currently very wide chemical interest, of  a particular determi- 
nant-reduction algorithm [5]. If  the original "Matrix-Tree" theorem [4] had been 
used to count the spanning trees in icosahedral C60, a co-factor of  a (60 x 60) 
matrix would have been needed; if the method of Gutman  et al. [2] is applied in its 
original form, it is possible [3] to solve the problem by evaluating a (31 x 31) deter- 
minant,  to a min imum of  21 significant figures. This may be done by invoking 
some devices in modulo arithmetic [3], o r -  by use of recently available commercial  
programs such as Mathematica  - directly [27]. In the work described here, we 
have applied a simple and easily handled algorithm to reduce even this 31 st-order 
determinant  to one of  (11 x 11). Because of the exceptionally high symmetry pos- 
sessed by icosahedral C60, it is possible to use the five-fold symmetry inherent 
within our (11 x 11) determinant  (see the table) in order to factorise it into the pro- 
duct of  two (2 x 2) determinants, both squared, and one (3 x 3). The hand-calcu- 
lated result, in terms of  powers of  prime numbers, agrees with the one given here. P. 
Pollak (a colleague of R.B.M.) has also confirmed the quoted result "by hand",  
by capitalising [28] on this same symmetry as displayed by the (60 x 60) matrix that  
features in an application of  the original "Matrix-Tree" theorem [4] to C60. 
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